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ABSTRACT: Boronic acid (or ester) is a well-known temporary
masking group for developing anticancer prodrugs responsive to
tumoral reactive oxygen species (ROS), but their clinic application is
largely hampered by the low activation efficiency. Herein, we report a
robust photoactivation approach that can spatiotemporally convert
boronic acid-caged iridium(III) complex IrBA into bioactive IrNH2
under hypoxic tumor microenvironments. Mechanistic studies show
that the phenyl boronic acid moiety in IrBA is in equilibrium with
phenyl boronate anion that can be photo-oxidized to generate phenyl
radical, a highly reactive species that is capable of rapidly capturing O2
at extremely low concentrations (down to 0.02%). As a result, while
IrBA could hardly be activated by intrinsic ROS in cancer cells, upon light irradiation, the prodrug is efficiently converted into
IrNH2 even in limited O2 supply, along with direct damage to mitochondrial DNA and potent antitumor activities in hypoxic 2D
monolayer cells, 3D tumor spheroids, and mice bearing tumor xenografts. Of note, the photoactivation approach could be extended
to intermolecular photocatalytic activation by external photosensitizers with red absorption and to activate prodrugs of clinic
compounds, thus offering a general approach for activation of anticancer organoboron prodrugs.

■ INTRODUCTION
Organoboron (boronic acid/ester) compounds have gained
extensive research interest in modern medicinal chemistry.1−3

Generally, the three-coordinate boron is electron-deficient and
can form covalent adducts with biomacromolecules, rendering
boron a unique structural role in drug design;4−6 successful
examples include bortezomib, tavaborole, and crisaborole for
clinic treatment of different diseases.7 Of equal significance is
the reactivity of organoboron toward certain reactive oxygen
species, particularly H2O2, which is overexpressed in many
types of tumor cells.8−11 In past years, tremendous efforts have
been spent on developing organoboron-based anticancer
prodrugs of both organic and inorganic compounds.12−26 In
principle, a majority of bioactive molecules can be created as
boronic acid/ester prodrugs based on their hydroxy or amine
group that can be functionalized with traceless linkers.27 These
prodrugs can indeed be activated by H2O2 and release the
intact drug molecules/derivatives (Figure 1a). The bimolecular
reaction between phenylboronic acid and H2O2 has a relatively
slow reaction rate with kobs = 2.4 M−1 s−1 at pH 7.3.28 Such a
reaction rate suggests that a high concentration of H2O2 is
required for prodrug activation. However, the endogenous
H2O2 may not always be sufficient in view of its heterogeneous
distribution and the upregulated antioxidant system within
tumors.29 To this end, endeavors to conjugate ROS amplifiers
(e.g., ferrocene) or to introduce ROS inducers (e.g., lip-
opolysaccharide) into boronic prodrugs were found to
significantly improve the activation efficiency.29−33 Never-

theless, it is still of great challenge to develop a spatiotempor-
ally controllable and universal approach for organoboron-
prodrug activation.
Photoinduced prodrug activation is one of the most

powerful strategies for cancer treatment with spatiotemporal
resolution at the disease tissue.34−37 In the literature, prodrugs
based on metal complexes have been rapidly developed owing
to their rich photochemical properties.38,39 Indeed, prodrugs
containing metal ions of platinum,40−47 ruthenium,48−55 and
others56−62 have been reported that can be either photo-
catalytically or photochemically activated within localized
tumors. In view of the lower side effects for localized cancer
treatment as in the clinical photodynamic therapy (PDT),
there is a possibility of harnessing surrounding O2 to aid
prodrug activation, such as utilizing the type I photosensitizing
mechanism by consuming reductants to photocatalytically
reduce O2 into superoxide radical anion (O2•−) for boron-
prodrug activation (Figure 1b).63,64 However, tumors are
known to feature a hypoxic microenvironment with an O2
content of 0.02−2%.65 Even though type I PDT has been
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reported to be less affected by tumor hypoxia, the not-so-
strong reaction rate for the photochemically reduced photo-
sensitizer (PS•−) to capture O2 (rate constant ∼105 M−1·s−1)63
may not provide enough reactive oxygen species (ROS) for
boron-prodrug activation (Scheme S1).
In the literature, it has been known that carbon radical is

extremely reactive toward dioxygen with a rate constant as high
as ∼109 M−1 s−1;66,67 thus, even a low concentration of O2
could trigger fast enough reactions (Scheme S1). In view that
boronic acid in aqueous solution is in equilibrium with
boronate anion [R-B(OH)3−], which can be photocatalytically
converted into carbon radical (by directly quenching the
excited state of photocatalyst),68−70 we conceive the possibility
of using light to activate boron prodrugs under hypoxic tumor
microenvironments via a phenyl carbon radical mechanism
(Figure 1c). Based on the fact that organoiridium(III)
complexes have well-known photocatalytic properties and
many of them are anticancer active,71−82 we began with a
boronic acid-containing Ir(III) complex, IrBA (Figure 2a), for
a proof-of-concept study. Herein we report that IrBA displays
a reasonable stability and a low cytotoxicity, but upon light
irradiation under hypoxic conditions, the boron moiety can be
efficiently removed to generate IrNH2, leading to potent
antitumor activity in vitro and in vivo. Importantly, such a
strategy could be extended to intermolecular photocatalytic
activation by external photosensitizers with red absorption and
to activate boron-caged clinic drugs. To the best of our
knowledge, it is the first time that the photoinduced phenyl
radical mechanism was identified to efficiently trigger boron-
prodrug activation.

■ RESULTS AND DISCUSSION
Complex IrBA was synthesized by refluxing [Ir(ppy)2Cl]2
(Hppy = 2-phenylpyridine) with a boronic acid-functionalized
bipyridine followed by column chromatography for purifica-
tion. The final product was fully characterized by 1H NMR,
13C NMR, 1H−1H COSY, 1H−13C HMBC, 1H−13C HSQC,
high-resolution mass spectrometry (HRMS), HPLC, and
elemental analysis (see details in the Supporting Information,
Figure S1a−d and S2a−c). This complex is soluble in common
organic solvents including DMSO, DMF, MeOH, CH3CN,
and CH2Cl2. When the complex is dissolved in DMSO as a
stock solution (10 mM), it is soluble in water and buffer
solution after dilution (≤1% DMSO).
Initially, we tested the stability of IrBA. In PBS solution

(containing 20% DMF, v/v), the complex did not form new
species after 48 h of incubation based on HPLC analysis
(Figure S3a). After incubating the complex with the lysate of
non-small-cell lung cancer A549 cells for 48 h, HPLC again
showed that the complex remained intact (Figure S3b). The
stability of IrBA in living A549 cells was also examined. After
incubating IrBA (50 μM) with A549 cells for 48 h, followed by
aspiration of medium, washing, cell lysis, and acetone
precipitation, over 80% of intact complex in the supernatant
was detected (Figure S3c,d). When IrBA was incubated with
rat liver microsomes, >95% of IrBA remained unchanged after
4 h of incubation (Figure S3e), indicating that IrBA displays a
high metabolic stability.
Next, the photoreactivity of IrBA was monitored by HPLC.

In the solution of PBS/DMF (8/2, v/v), IrBA (20 μM) was

Figure 1. Methods of boronic acid-prodrug activation. (a) Classic
activation by endogenous H2O2. (b) Activation by a type I
photodynamic process needing a high O2 concentration. (c) The
photocatalytic activation in this work that can happen under tumor
hypoxia conditions. Figure 2. (a) Photoreaction of IrBA under different conditions. (b)

LC chromatograms for transforming IrBA into IrNH2 in PBS/DMF
(8/2, v/v) after 420 nm of irradiation for indicated periods. Intensity
is based on OD280 nm.
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fully converted into IrNH2 within 10 min of 420 nm light
irradiation in the presence of 10 equiv of NADH and under air
(21% O2) as revealed from HPLC analysis (Figure 2b panel i),
which is likely caused by the photoinduced superoxide radical
anion for boron activation (type I photosensitizing mecha-
nism).
Interestingly, under the same irradiation condition but

without NADH, the complex could still be transformed into
IrNH2 in a slightly slower rate with 80% yield in 10 min and
∼100% yield in 15 min (Figure 2b panel ii, iv, respectively). Of
note, the reaction proceeded equally well under hypoxia (1%
O2) compared to the aerobic condition without NADH, with
78% yield in 10 min and with full conversion within 15 min of
420 nm photoirradiation (Figure 2b panels iii and v). When
performing the experiments at extremely low levels of 0.1% O2
(panel vi) and 0.02% O2 (panel vii), IrBA can still be fully
converted into IrNH2 after 30 min of light irradiation (please
note that the typical O2 concentration in tumors varies from
0.02% to 2% O2). The non-necessity of external reductants and
weak dependence toward O2 concentrations for the photo-
conversion of IrBA suggest a reaction pathway other than
direct O2 photosensitizing (i.e., not via O2•−). When the
reaction solution was bubbled with N2 or degassed by three
cycles of freeze−pump−thaw, no obvious reaction was found
(Figure 2b panel viii). Therefore, while the photoreaction is
insensitive to O2 concentration, O2 is essential for the
transformation to occur.
Then we tried to understand the reaction mechanism. As

reported before,83 aromatic boronic acid is a rather weak
reductant ([Ar-B(OH)2]+/[Ar-B(OH)2] = +2.23 V vs Ag/
AgCl (Ar = pMeO-CH2-Ph, Figure S4) that is not accessible by
most photo-oxidants. However, boronate anion R-B(OH)3−,
which could be generated from hydrolysis in aqueous solution,
is more susceptible to oxidation with a reduction potential of
0.85 V vs Ag/AgCl (Figures 3a, S4). Based on 1H NMR in the
solution of D2O containing 40 wt % MeOD and 0.1 M NaCl, a
pH (adjusted by HCl and NaOH)-dependent chemical shift of
the aromatic protons was found (Figure S5a). Plotting the 1H
NMR of protons on the bipyridine ligand versus pH gave a pKa
of 6.76 (Figure S5b). By using ESI-MS, the hydroxylated
Ir(III) species was detected with an m/z of 906.2 in the
presence of 1 equiv (full conversion) of nBu4NOH (Figure
S5c,d). Thus, formation of R−B(OH)3− exists in an
equilibrium (R−B(OH)3− + H+ ↔ R−B(OH)2 + H2O), and
the photoreaction could be influenced by pH values. To prove
this hypothesis, we performed the photoreaction under
different buffer conditions in hypoxia (1% O2). At pH = 4.5,
the reaction was suppressed with 31% yield after 30 min of
light irradiation (Figure S6a), which increased to 60% at pH
6.0 (Figure S6b). Instead, at pH 8.0 (10 mM NH4HCO3
solution), >99% yield was found within 10 min of photo-
irradiation (Figure S6b), which is even faster than that in PBS
solution (full reaction requiring 15 min). Based on cyclic
voltammetry analysis and emission spectrum (Figure S7a,b),
the photoexcited Ir806 (a substructure of IrBA without the
boronic acid moiety) is a good oxidant (reduction potential of
1.02 V) that is able to oxidize R−B(OH)3− into boric acid and
phenyl radical. Indeed, when 1,1-diphenylethene was present,
the adducts corresponding to phenyl radical to alkene addition
without (m/z 986.3043) or with (m/z 984.2929) hydrogen
elimination was found under anaerobic conditions based on
HRMS analysis (Figures 3b, S8a); moreover, when the radical
trapping reagent 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)

was present, the product with m/z (961.3408, error <0.5 ppm)
and isotopic pattern consistent with phenyl radical to TEMPO
adduct (Ir-TEMPO, Figures 3b and S8b) was found,
indicating formation of a phenyl radical intermediate. There-
fore, the following reaction pathway was proposed (Figure 3a).
The boronate anion R−B(OH)3−, generated from hydrolysis
in PBS, could be oxidized by the photoexcited Ir(III)
intermediate (via single electron transfer, SET) into a strongly
reactive phenyl radical, which can capture dioxygen in a fast
rate, followed by forming a peroxide species that is capable of
oxidizing another molecule of IrBA and produce two
equivalents of IrNH2.
Since the Ir(III) complex is emissive, we then used

fluorescence microscopy to monitor the intracellular distribu-
tion. After incubating A549 cells with IrBA (2 μM) for 4 h,
bright green emission was observed in the cytoplasm, which
overlaid well with MitoTracker Red with a Pearson’s
correlation coefficient (PCC) of 0.83 (Figure 4a, upper
panel), and it also displayed a good overlap with LysoTracker
Red but with a smaller PCC of 0.52 (Figure 4a, lower panel).
Since carbon radical is known to directly damage DNA,84 we
considered that the surrounding DNA (possibly from
mitochondria) may be destroyed if the above-mentioned
photoreaction can happen in cancer cells. To this end, we
treated A549 cells with IrBA for 4 h, which was subsequently
subjected to hypoxia conditions for 1 h (<0.1% O2)

85 followed

Figure 3. Mechanism studies for photoactivation. (a) A proposed
reaction pathway, with the photoredox potentials of the Ir806 and Ar-
B(OH)3−. (b) Photoreaction of IrBA with free radical trapping
agents.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c00254
J. Am. Chem. Soc. 2023, 145, 10082−10091

10084

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c00254/suppl_file/ja3c00254_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c00254?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c00254?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c00254?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c00254?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c00254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


by 420 nm irradiation for 10 min. Then, we examined the
integrity of mitochondrial DNA (mtDNA) and nuclear DNA
(nDNA) by measuring the representative mtDNA
tRNALeu(UUR) and nDNA β2-microglobulin using real-time
polymerase chain reaction (qPCR).86,87 As the results show in
Figure 4b, mtDNA in the IrBA-light group was damaged to a
higher extent compared to nDNA with a fold-ratio of 0.67 (p <
0.01), whereas the light-only and IrBA-dark groups did not
show any change, suggesting that phenyl carbon radical was
indeed generated under the cellular environment. In fact, in the
solution containing supercoiled (sc) pUC19 plasmid under an
atmosphere of <0.1% O2, the photoactivated IrBA directly
destroyed the plasmid DNA into open circular (OC) form
(Figure 4c); of note, such an activity was fully inhibited in the
presence of TEMPO, a radical trapping reagent that can
selectively suppress carbon-centered radicals, but not oxygen-
centered radicals.88

Subsequently, we characterized the photoreaction products
in cancer cells. A549 cells were treated with IrBA for 4 h and
then 420 nm light irradiation for 30 min under hypoxia (<0.1%
O2), followed by aspirating the medium, washing, and cell
lysing. HPLC analysis of the supernatant of the cell lysates after
acetone precipitation showed >95% conversion into IrNH2

(Figure S9). For comparison, in the similar condition but
without light irradiation, less than 10% conversion was
observed. These results collectively revealed that photo-
activation is capable of efficiently transforming IrBA into
IrNH2 in cancer cells via a phenyl radical mechanism under
hypoxic conditions.
Since the cationic Ir(III) complexes accumulated in

mitochondria may induce mitochondria depolarization, we
monitored the mitochondria membrane potential of A549 cells
by JC-1, a cationic dye that displays aggregated orange to red
emission in normal mitochondria but shows monomer green
color when mitochondria are depolarized. As shown in Figure
S10, while only red emission was observed in cells treated with
IrBA (5 μM) in the dark, intensive green fluorescence but
limited red emission was detected when the complex-treated
cancer cells were further irradiated with 420 nm light for 10
min under hypoxic conditions, suggesting distinct loss of MMP
and consistent with IrBA to IrNH2 transformation in cancer
cells. In view that mitochondrial dysfunction may lead to
apoptosis, the treated cells were further examined by annexin
V/PI dual staining. As shown in Figure S11, IrBA induced
neither green (annexin V) nor red (PI) fluorescence under
dark conditions; after 420 nm irradiation for 10 min, bright
green emission with negligible red signals was detected,
indicative of early apoptosis. These results collectively indicate
that the boronic acid-caged Ir(III) complex is photochemically
activatable to induce MMP loss and apoptosis under hypoxia.
Subsequently, the cytotoxicity of the iridium complex was

investigated against lung carcinoma A549 by MTT assays
(Table 1). In dark conditions, IrBA was found to be nontoxic
to A549. In contrast, IrNH2 showed high dark cytotoxicity
with IC50 values of 8.2 μM. When cancer cells treated by IrBA
for 4 h were irradiated with 420 nm light for 10 min, the
cytotoxicity was found to significantly increase with an IC50 of
1.0 μM, i.e., photo index (PI, IC50,dark/IC50,light) of >150. It is
noteworthy that when the experiments were performed under
hypoxia conditions (<0.1% O2), IrBA also exhibited potent
photocytotoxicity (4.4 μM) that is comparable to IrNH2 under
dark conditions. Of note, the PI of IrBA under both normoxia
and hypoxia are much stronger than IrNH2 under the same
conditions. Similar results were found in breast adenocarcino-
ma (MCF-7) and melanoma (A375) cells (Table S1). For
comparison, 5-ALA was inactive under hypoxia after light
irradiation.
Then we examined if the PDT activity is involved in the

cytotoxicity. Results showed that no superoxide and hydroxyl
radicals were detected for IrNH2 and IrBA in A549 cells under
normoxia and hypoxia conditions (Figure S12). In contrast,
both IrNH2 and IrBA can generate 1O2 with quantum yields of
0.50 and 0.46, respectively, under aerobic solution. When A549
cells were treated by IrNH2 under normoxia following light

Figure 4. (a) Fluorescence images of IrBA (2 μM) in A549 cells. The
cells were treated with MitoTracker Red or LysoTracker Red for
colocalization analysis. (b) Relative fold change of mtDNA/nDNA
after treating A549 cells with IrBA with or without 420 nm light
irradiation under hypoxia. (c) Gel electrophoresis for the pUC19
plasmid treated with IrBA with or without 420 nm light irradiation in
hypoxic solution (<0.1% O2).

Table 1. Photocytotoxicity (μM) of the Ir(III) Complexes toward A549 Cells under Normoxia and Hypoxia Conditionsa

IC50 under normoxia
b IC50 under hypoxia

c

Entry Dark Light PI Dark Light PI

IrBA >150 1.0 ± 0.1 >150 >150 4.4 ± 0.3 >34
IrNH2 8.2 ± 0.5 0.17 ± 0.03 48 9.0 ± 0.6 2 ± 0.4 4.5
5-ALA >200 30.7 ± 2.0 >7 >200 >200

aThe cells were treated with compounds for 4 h and then irradiated with 420 nm light for 10 min. The cytotoxicity was measured after a total 48 h
incubation. bUnder normoxia. cUnder hypoxia (O2 < 0.1%). In all cases, the control group did not show obvious cytotoxicity under light
irradiation.
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irradiation, a significant amount of 1O2 generation was found
based on the SOSG probe (Figure S12), whereas IrBA formed
a weaker signal. Under hypoxia, however, no 1O2 signals were
detected. Therefore, a type II PDT was involved in the
photocytotoxicity under normoxia conditions (particularly for
IrNH2), but not under hypoxia.
Next, the photoactivity of IrBA was examined in 3D

multicellular spheres (MCSs) that can mimic the pathophysi-
ology of solid tumors including hypoxic regions.89 When the
A549 tumor spheroids reached ∼500 μm in diameter, they
were treated with each compound followed by calcein AM/
ethidium homodimer (EthD-1) costaining. The probes can
generate dual fluorescence and differentiate between living
cells, which show green emission by the active esterase, and
dead cells giving red emission due to a damaged cell
membrane. As shown in Figure S13, in the group treated by
IrBA (5 μM) for 24 h and a further 460 nm (23.9 mW/cm2)
light irradiation for 10 min, bright red fluorescence but
negligible green emission were found. For comparison, in the
photoirradiated group treated by 5-aminolevulinic acid (5-
ALA), a clinic photosensitizer requiring O2 for efficient PDT,
or by IrBA without light irradiation, only green emission
instead of red fluorescence was found, which again supports
that photoirradiation can activate the anticancer activity of
IrBA in tumor-like conditions.
The strong photocytotoxicity of IrBA particularly under

hypoxia prompted us to further examine its in vivo antitumor
activity in mice bearing A549 xenografts. In general, the tumor-
bearing mice were injected (i.p.) with IrBA (2.5 mg/kg) once
every 2 days with or without 460 nm light irradiation 4 h after
each injection (on the localized tumor region). After 19 days of

treatment, IrBA with light significantly suppressed tumor
growth by 75% in tumor volume and 71% in tumor weight in
comparison to the vehicle control (Figure S14). Of note, in the
group of IrBA without light irradiation, little to low inhibition
of tumor growth was found, indicating that the intratumoral
reactive oxygen species (ROS) (H2O2) is unable to activate the
boronic acid prodrug in this model. For the group treated with
light only, no inhibition was found. Also, no mouse death or
mouse body weight loss was observed during the whole
treatment process.
Since certain photosensitizers are strong photo-oxidants and

can absorb long-wavelength light, it is envisioned that they are
applicable in activating boron prodrugs under hypoxia in a
similar mechanism. A notable example is methylene blue
(MB),63 which has an intensive absorption at 600−700 nm
and is a strong photo-oxidant (MB*/MB− = 1.6 V, vs SCE).
Initially, a model compound, 4-(hydroxymethyl)phenylboronic
acid, was tested by mixing with an equimolar ratio of MB
followed by 630 nm light irradiation under hypoxia (O2 = 1%),
and 4-(hydroxymethyl)phenol was obtained in 96% yield
(Figure S15a) within 30 min. A similar reaction yield of 91%
was found when using boronic ester as the precursor (Figure
S15b). Then, the ability of MB to activate IrBA was studied.
After 30 min of 630 nm light irradiation under hypoxia (Figure
5), reaction yields of 92% (Figure S15c) were found to form
IrNH2. Such a reaction rate is faster than that by 10-fold excess
of H2O2 and peroxynitrite generator SIN-1 requiring 3 and 1 h
for full conversion, respectively (Figure S16). Similarly,
boronic ester-caged baclofen (a clinic agonist of γ-amino-
butyric acid receptor),90 vorinostat (a clinic histone
deacetylase inhibitor),91 and AA147 (a preclinical activator

Figure 5. Activation of boronic acid/ester-caged compounds by MB after 30 min of 630 nm light irradiation at 1% O2. The inset in the upper panel
shows the photoactivation mechanism by MB. Examples of boronic acid/ester-caged prodrugs are shown in the lower panel with the parent drug
highlighted.
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of ATF6 receptor)92 can be activated with a 70−80% yield
under similar photoactivation conditions (Figure S15d−f). In
the control, when MB was replaced by fluorescein (FL), a
photosensitizer that can reduce dioxygen but is unable to
oxidize phenylborate anion ([FL]*/[FL]− = 0.77 V, vs
SCE),93,94 no obvious reaction was found (even in the
presence of NADH, data not shown), thus ruling out the
mechanism involving O2•− for the photoinduced trans-
formation reaction under hypoxia conditions.
Since MB can efficiently activate IrBA with a high efficiency

in solution (Figure S17a), we further examined whether red
light can activate IrBA in combination with MB in vitro and in
vivo. Initially, the photocytotoxicity on 2D monolayer cells
under hypoxia was tested. As depicted in Figure S17b and
Table S2, while MB (2 μM) in 630 nm red light, IrBA in 630
nm light, and “IrBA + MB (2 μM)” in dark displayed weak
cytotoxicity in hypoxia, the “IrBA + MB (2 μM)” combo under
red light treatment potently suppressed cell growth with an
IC50 of 3.6 to 13.6 μM (in terms of IrBA concentration),
which is 15- to 20-fold stronger than that under dark
conditions. When MB was used at 5 μM, a similar cytotoxicity
profile was found (Figure S17c). Based on the Chou and
Talalay method,95 a good synergistic effect was observed
(Figure S17d). The cytotoxicity of vorinostat-BA can be
similarly activated by MB under 630 nm light irradiation
(Figure S18, Table S3). On the other hand, in the A549 3D
tumor spheroids (Figure S17e,f), the “IrBA (10 μM) + MB (2
μM)” combo treatment can also induce potent cytotoxicity
after 630 nm light irradiation with full conversion into IrNH2,
but single treatment by IrBA or MB under the red light
irradiation did not cause obvious cytotoxicity. We further
examined the in vivo antitumor activity of the combo

treatment. The mice bearing A549 tumor xenograft were
treated (i.p.) by IrBA (2.5 mg/kg), MB (2 mg/kg), or “IrBA
(2.5 mg/kg) + MB (2 mg/kg)” with or without 635 nm red
light irradiation on the tumor region 4 h after each injection
(Figure 6a). As shown in Figure 6b−d and Table S4, MB alone
and IrBA alone mildly inhibited tumor growth by 33% and
28%, respectively, under red light irradiation after 25 days’
treatment, and the “IrBA + MB” combo with red light
irradiation significantly suppressed tumor growth by 83% (p <
0.001 compared to vehicle control), which is comparable to
that by IrNH2 (2 mg/kg, equal molar to IrBA) treatment
(72% inhibition). The treatment did not cause mouse death or
body weight loss. Since the statistical significance in the “IrBA
+ MB-red light” group (vs vehicle control) can be found at day
4 (p < 0.01), the treatment dosage or frequency could be
decreased in future animal studies.

■ CONCLUSION
In summary, we have identified a new photoactivation
approach for boronic acid prodrugs. A proof-of-concept
study by using a cyclometalated Ir(III) complex showed that
this complex is photoactivatable under hypoxic conditions. The
complex displays a reasonable stability under cellular
conditions in the dark but can be efficiently and controllably
activated by visible light irradiation. Mechanistic studies show
that the activation process involves a photoinduced single
electron transfer process to form a phenyl radical, which is
extremely reactive to capture dioxygen at a rather low
concentration. Consequently, the photoactivation process
works particularly well in cancer cells under hypoxic
conditions, accompanied by mitochondrial DNA damage,
MMP loss, and strong cytotoxicity toward different cancer

Figure 6. Red light-activated antitumor activity in mice bearing A549 tumor xenografts. The tumor-bearing mice were treated with “IrBA + MB”,
IrBA, or MB with or without 635 nm light irradiation once every 2 days for eight times (before day 16). The red light was given 4 h after each
injection for 10 min. (a) Graphic description. (b−d) The tumor volume (b) and body weight (c) after different days of treatment are shown. The
tumor weights after sacrificing the mice (day 25) were measured (d) with representative pictures shown. ***p < 0.001.
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cells. More importantly, while IrBA in the dark was unable to
suppress tumor growth in vivo, the photoirradiation signifi-
cantly increased the antitumor activity without causing obvious
side effects. Since the intermolecular photoactivation by a
clinic red light-absorbing methylene blue worked equally well
under hypoxic conditions in vitro and in vivo, it is believed that
the photoactivation approach could act as a general tool to
highly spatiotemporally activate boron prodrugs for cancer
eradication with high efficiency but limited side effects.
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